Skip to main content

Introduction to Programming Languages

 Introduction to Programming Languages

A program is a set of instructions that tells a computer what to do in order to come up with a solution to a particular problem. Programs are written using a programming language. A programming language is a formal language designed to communicate instructions to a computer. There are two major types of programming languages: low-level languages and high-level languages.

Low-Level Languages 

Low-level languages are referred to as 'low' because they are very close to how different hardware elements of a computer actually communicate with each other. Low-level languages are machine oriented and require extensive knowledge of computer hardware and its configuration. There are two categories of low-level languages: machine language and assembly language.

Machine language, or machine code, is the only language that is directly understood by the computer, and it does not need to be translated. All instructions use binary notation and are written as a string of 1s and 0s. A program instruction in machine language may look something like this:

However, binary notation is very difficult for humans to understand. This is where assembly languages come in.

 

An assembly language is the first step to improve programming structure and make machine language more readable by humans. An assembly language consists of a set of symbols and letters. A translator is required to translate the assembly language to machine language called the 'assembler.'

While easier than machine code, assembly languages are still pretty difficult to understand. This is why high-level languages have been developed.

High-Level Languages

A high-level language is a programming language that uses English and mathematical symbols, like +, -, % and many others, in its instructions. When using the term 'programming languages,' most people are actually referring to high-level languages. High-level languages are the languages most often used by programmers to write programs. Examples of highlevel languages are C++, Fortran, Java and Python.

Learning a high-level language is not unlike learning another human language - you need to learn vocabulary and grammar so you can make sentences. To learn a programming language, you need to learn commands, syntax and logic, which correspond closely to vocabulary and grammar.

The code of most high-level languages is portable and the same code can run on different hardware without modification. Both machine code and assembly languages are hardware specific which means that the machine code used to run a program on one specific computer needs to be modified to run on another computer.

specific which means that the machine code used to run a program on one specific computer needs to be modified to run on another computer. A high-level language cannot be understood directly by a computer, and it needs to be translated into machine code. There are two ways to do this, and they are related to how the program is executed: a high-level language can be compiled or interpreted.

Popular posts from this blog

Maximum Difference Between Even and Odd Frequency | LeetCode

We are given a string consisting of lowercase English letters. Our task is to find the maximum difference between the frequency of two characters in the string such that: One of the characters has an even frequency . The other character has an odd frequency . The difference is calculated as:  odd_frequency - even_frequency We need to return the maximum possible difference between the odd and even frequencies. Example Walkthrough Let's take a couple of examples to better understand the problem: Example 1: Input:  s = "aaaaabbc" Frequencies: 'a' → 5 (odd) 'b' → 2 (even) 'c' → 1 (odd) Here, the maximum odd frequency is 5 (for 'a') and the maximum even frequency is 2 (for 'b'). Therefore, the result is: maxOdd - maxEven = 5 - 2 = 3 Example 2: Input:  s = "abcabcab" Frequencies: 'a' → 3 (odd) 'b' → 2 (even) 'c' → 2 (even) The maximum odd frequency is 3 (for 'a') and the maximum even fr...

Top 10 Beginner-Friendly LeetCode Questions and Their Solutions

If you're new to solving coding problems on LeetCode, it can feel overwhelming. Where do you start? Which problems are suitable for beginners? Don’t worry! In this blog post, I’ll guide you through   10 beginner-friendly LeetCode questions   that are perfect for getting started on your coding journey. These problems will help you build confidence, improve your problem-solving skills, and lay a solid foundation in data structures and algorithms. Why Start with Beginner-Friendly Problems? Before diving into advanced topics like dynamic programming or graph theory, it’s essential to: Build a strong foundation in basic programming concepts. Understand how to approach a coding problem methodically. Gain familiarity with LeetCode’s platform and its problem structure. The following problems are simple yet impactful, designed to introduce you to common techniques like loops, arrays, strings, and basic math operations. 10 Beginner-Friendly LeetCode Problems 1.  Two Sum (Easy) Prob...

Count Mentions Per User | Leetcode | Problem Explanation and Solution Approaches

Tracking mentions in messages is a common task in communication-based applications. This blog post breaks down a complex problem, "Count Mentions Per User," and walks through how to solve it efficiently with a clear understanding of all rules and constraints. Problem Statement You are given: An integer numberOfUsers representing the total number of users. An array events where each element is of size n x 3 and describes either a "MESSAGE" or an "OFFLINE" event. Each event can be one of the following types: MESSAGE Event : ["MESSAGE", "timestamp", "mentions_string"] Indicates that users are mentioned in a message at a specific timestamp. The mentions_string can contain: id<number> : Mentions a specific user (e.g., id0 , id1 ). ALL : Mentions all users (online or offline). HERE : Mentions only users who are online at the time. OFFLINE Event : ["OFFLINE", "timestamp", "id<number>"] In...